If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-625=0
a = 1; b = 2; c = -625;
Δ = b2-4ac
Δ = 22-4·1·(-625)
Δ = 2504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2504}=\sqrt{4*626}=\sqrt{4}*\sqrt{626}=2\sqrt{626}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{626}}{2*1}=\frac{-2-2\sqrt{626}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{626}}{2*1}=\frac{-2+2\sqrt{626}}{2} $
| 210+0.25m=410 | | 8x-12+2x=13+5x | | 5x+5=11x+6 | | 8+4.5x=2-2.6x | | 2x−32+4(3x−24)=14x | | 5x-3(-2x-12)=14 | | 9+x=0* | | 9c-10=10-c | | 3-4n+9+3n=-4+5n | | -2z=-248 | | -34x-2=14 | | 55=-7h+6 | | x+7=13* | | -11=−11=-11a+33 | | 4(3x+3)=12x-5 | | –4b+10=–9b | | 5x-5=12x-19 | | m/24=-21 | | 3a+1=5a+2426 | | y=2.3(2)+28 | | (x^2-3x-7)/x+3=0 | | 17=-5t+2 | | 4x-9+4x-9+20x=38 | | T+20+6t+7t+6=180 | | 3x+4.5=21 | | x+30+8x+x=180 | | –16h−9+14h=–1−2h | | -4(3+m)=24 | | x.2.3x-15+4.2x=69.5 | | 4x-119=5x+106 | | 9x-4=2x+3 | | q/7=8 |